
A simple algorithm for real-time decomposition of first order
Ambisonics signals into sound objects controlled by eye gestures

GISO GRIMM1,2, JOANNA LUBERADZKA1, JANA MÜLLER1 AND VOLKER
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Abstract

Spatial filtering and decomposition of sounds into acoustic source objects is increasingly investigated
for speech enhancement in hearing aids. However, with increasing performance and availability of these
‘space aware’ hearing aid algorithms, knowledge of the user’s personal listening preferences and knowl-
edge of the attended source becomes crucial. Here we present a prototypical algorithm which decomposes
a first order Ambisonics stream into multiple acoustic objects using space and frequency dependent ob-
ject probability as a de-mixing gain. Eye gestures recorded by electrooculography are used to select the
desired acoustic object for re-synthesis. The methods of scene decomposition and re-synthesis as well
as the eye-gesture controlled object selection are described. The aim of this paper is to demonstrate
the principle functioning and applicability of a decomposition algorithm with eye gesture control. The
performance of object separation was assessed in simple and more realistic acoustic environments. Al-
though further improvement of the decomposition algorithm and an increased robustness of the gesture
detection are required for practical applications, the results indicate that the proposed eye-gesture based
object decomposition has the potential of providing a benefit for hearing aid users.

1 Introduction

Current hearing aid technology employs advanced
signal processing techniques for speech enhancement
such as noise cancellation, dereverberation and di-
rectional filtering. Nevertheless, for a hearing aid
user, speech communication in many of the common
acoustic situations (i.e., the classical cocktail-party)
remains challenging [3].

To overcome the noise problem, Computational
Auditory Scene Analysis (CASA) algorithms are in-
vestigated, which extract information on the acous-
tic scene similarly to a human listener to build ob-
jects, i.e., separated information streams, based on
the noisy acoustic input. One of the future goals of
hearing-aid technology is to use these CASA algo-
rithms to create space-aware hearing devices, which
gather detailed information about the acoustic ob-
jects in the surrounding and resynthesize or enhance
the desired object depending on the hearing wish. To-

gether with a method to detect the hearing wish, this
technology could lead to an interactive hearing aid,
which provides the user with the chosen content of
the acoustic scene in a way that minimises the detri-
mental effect of a hearing impairment.

The user’s hearing wish should be estimated by
the hearing device in an unobtrusive way, which
doesn’t require any external devices. Electrooculo-
graphy (EOG), which extracts the information about
the gaze direction, is a possible solution that has al-
ready been used for application in audiology [12] and
human-computer-interfaces [15]. This contribution
explores the possibilities of using a simplified CASA
algorithm in combination with EOG-based control of
the hearing wish for the design of a space-aware hear-
ing aid.
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2 Methods

2.1 CASA algorithm

A simple CASA algorithm is proposed, which decom-
poses an acoustic environment into multiple acoustic
objects. This algorithm requires horizontal first or-
der Ambisonics (FOA) input signals in the B-format
in Furse-Malham normalisation, i.e., the w, x and y
channels; the signal coherence and direction is anal-
ysed in time and frequency. This method is related
to DirAC [13] and harpex [4]. However, the aim
of those methods is the spatial up-sampling for re-
production of B-format content on playback systems
with higher spatial resolution, whereas the proposed
method aims at decomposing the acoustic environ-
ment into a small number of acoustic objects, for
object-based audio coding. The discrete time-domain
signals are transformed into the frequency domain us-
ing a short-time Fourier transform (STFT) with an
overlap-add method [2]. The block size was 1024 sam-
ples at a sampling rate fs of 44.1 kHz. The window
length was set to 2048 samples, i.e., 50% overlap of
blocks, and the FFT length L was 4096 samples, re-
sulting in a frequency resolution of 10.8 Hz per fre-
quency bin. The short-time input spectra are denoted
with W (k, ν), X(k, ν) and Y (k, ν), respectively, with
the time index k and the frequency index ν. The sig-
nal coherence is estimated by the absolute value of
the estimation value of the normalised product of X
with the complex conjugate Y :

c(k, ν) =

∣∣∣∣∣∣
〈
X(k, ν)Y (k, ν)∣∣∣X(k, ν)Y (k, ν)

∣∣∣
〉
τ

∣∣∣∣∣∣ (1)

Temporal averaging is achieved here with a first-order
IIR lowpass filter with time constant τ . The time con-
stant τ was set to 40 ms, corresponding to a cut-off
frequency of 4 Hz.

Only if a signal component is coherent, i.e., c
is close to one, the direction of arrival estimation
ϕ = 6 {X + jY } is valid (plane wave decomposition).
This approach is motivated by the finding that only
components with a high coherence are relevant for
perceptual localisation [11, 7]. However, opposite to
the approach of [11], not a sparse selection of glimpses
is used for characterisation, but the coherence c is
taken as a continuous weighting function.

In a next step, the intensity of the
coherence-weighted sound pressure, Icoh(k, ν) =

|c(k, ν)W (k, ν)|2, is calculated. It is accumulated
in a two-dimensional sliding histogram Ihist(k, ϕ, b),
where ϕ is the sampled azimuth, sampled in 24 bins,
and b is the frequency band index of a logarithmic fre-

quency scale bs(ν) = 4 log2( ν
125L/fs

) with four bands

per octave in the frequency range from 125 Hz to
4 kHz; b(ν) = floor(bs(ν)). For each frequency bin ν,
the intensity was added to the intensity histogram at
the frequency band b(ν) and at the linearly sampled
estimated direction of arrival ϕ(ν). The forgetting
time constant (first-order IIR lowpass per azimuth
and frequency bin) of the histogram was set to 500
periods of the band centre frequency, limited to a
maximum of 1 second for frequencies below 500 Hz.
Since all the introduced measures depend on time,
we simplify the notation by omitting the time index
k.

With the non-linear frequency scale of the in-
tensity histogram, sounds with pink-noise frequency
characteristics result in an equal distribution of in-
tensity across frequency bands. Bandlimited stimuli,
such as speech or noise, can be roughly approximated
by a Gaussian distribution across frequency bands.
As a model function for a single sound object, the
product of a raised cosine function as a function of
azimuth ϕ with a Gaussian as a function of frequency
bands b was used:

Imod,n(ϕ, b) = An

(
1 + cos(ϕ− ϕn)

2

)wn

e
− (b−bn)2

2s2n ,

(2)
where n is the object number, An is an object in-
tensity coefficient, ϕn the object direction of arrival,
wn the source width, bn the spectral centre, and sn
the spectral extension. These object parameters An,
ϕn, wn, bn and sn were estimated by minimising
the squared difference between the modelled inten-
sity and the intensity histogram, summed across all
discrete directions and frequency bands:

e =
∑
ϕ

∑
b

(
Ihist(ϕ, b)−

N∑
n=1

Imod,n(ϕ, b)

)2

(3)

A gradient-search method with one iteration in each
processing cycle was used. The number of modelled
objects N was fixed, and set to 3 in this study.

For decomposition into the estimated object
source signals, for each object n the FOA signal is
sampled in the object direction ϕn using a maxrE
decoder [6], corresponding to a hyper-cardioid micro-
phone steered towards the estimated direction of ar-
rival ϕn. Additionally, for each object, a de-mixing
gain is computed in each frequency bin:

Gn(ν) =
Imod,n(ϕn, bs(ν))
N∑
l=1

Imod,l(ϕl, bs(ν))

, (4)

where ϕn is the direction of the tested object n.
Finally, the resulting output signal in the STFT-
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representation is:

Sn(ν) = (W (ν)+

cos(ϕn)X(ν) + sin(ϕn)Y (ν))Gn(ν) (5)

The maxrE weighting 1√
2

is already part of the Furse-

Malham normalisation and thus not explicitly given
in Eq. 5. The time domain signal at the output of
the CASA algorithm for object n is the re-synthesised
STFT representation Sn.

Effectively, this algorithm consists of three steer-
able hyper-cardioid microphones combined with fre-
quency weighting based on the model function.

2.2 EOG control

The human eye acts as an electrical dipole. The
potential difference between the positively charged
cornea and the negatively charged retina is in the
order of 0.5 to 1 mV. In case of horizontal eye move-
ments, the orientation of the dipole is changed, and
the potential difference can be measured with a pair
of simple electrodes at the left and right side of the
head. The voltage is proportional to the gaze direc-
tion up to an angle of approximately 30 degrees [16].

For measurement of the EOG potential, a mobile
measurement amplifier with a high input impedance
and an amplification by a factor of 1000 was devel-
oped. The amplified signal was digitised with 10 bits
word length and a sample rate of 50 Hz using an Ar-
duino Nano board, and transferred to the signal pro-
cessing computer as a Bluetooth serial stream. The
device was battery driven to achieve a full electrical
separation from any other electrical device.

The CASA object was selected via eye gestures.
The EOG signal was high-pass filtered with a cut
off frequency of 0.025 Hz to compensate for base-
line drift. Baseline drift may be caused by interfer-
ing background, electrode polarisation or electrode
contact [10] and appears as a low frequency signal
change, which is not correlated with actual eye move-
ments [5]. The eye gesture was detected each time the
EOG potential exceeded a threshold of ±350µV for
more than 500 ms. Eye gestures to the left switched
to the next output stream on the left of the current
output stream, and eye gestures to the right selected
the next output stream on the right of the currently
selected object.

2.3 Stimuli

All stimuli used in this study were virtual acoustic
environments (VAEs), generated with a toolbox for
acoustic scene creation and rendering (TASCAR) [9].

The signals were rendered to a virtual FOA micro-
phone. VAEs from [8] were used, including early
reflections, late reverberation, source and listener
movement. The VAEs included an anechoic refer-
ence condition with a speech signal from the front and
three interferers from 90, 180 and 270 degrees (SNR:
-4.8 dB), and seven more realistic virtual acoustic en-
vironments, simulating a street (SNR: -4.7 dB), a su-
permarket (SNR: -4.1 dB), a conversation in a cafete-
ria (SNR: -2.7 dB), public announcements in a train
station (SNR: 1.9 dB), a dialog in a kitchen (SNR:
-1.7 dB), a monologue in a forest (SNR: -0.2 dB),
and a panel discussion (SNR: 37.7 dB). Clearly lo-
calised sound sources, e.g., the target speech signal,
were simulated based on anechoic recordings. Dif-
fuse sounds, e.g., distant traffic or babble noise, were
added as FOA recordings. Room acoustics were cal-
culated using a geometric image source model for
early reflections, and a feedback delay network [1, 14]
for late reverberation. All environments contained a
target speech signal and multiple spatially distributed
interferers. The direction of the target speech signal
differed across acoustic environments: In the refer-
ence condition, the ‘street’ and the ‘kitchen’ environ-
ment it was coming from the front. In the super-
market the target was in front of the virtual listener,
however, the listener moved the head, so the environ-
ment was rotated according to the head movement.
In the ‘train station’ the target was played back via
a virtual announcement system above the listener,
while the listener was walking on a platform. In the
‘cafeteria’ and ‘panel discussion’ the target was dis-
tributed across multiple alternating speakers in the
frontal hemisphere. In the ‘nature’ environment the
target was from 45 degrees to the right of the listener.

For the EOG controlled prototype, also the out-
put signals of the CASA algorithm were synthesised
in the direction of the estimated direction of arrival of
the sound objects. The selected sound sources were
played back to the listener via a 16 channel circular
loudspeaker setup, using horizontal 7th order Am-
bisonics.

3 Experimental Results

For validation of the source separation performance,
the SNR of each estimated CASA object was calcu-
lated and compared to a static front-facing directional
microphone. If at least one CASA object has a higher
SNR than the directional microphone, this algorithm
can provide a benefit for the user if the optimal CASA
object can be selected.

The SNR is shown in Figure 1. The input SNR
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of the VAEs is shown as horizontal lines. The SNR
of the three CASA objects is shown by vertical grey
lines, with the digits 1 to 3. The length of the line
denotes the SNR benefit (line pointing upwards) or
detriment (line pointing downwards). The vertical
dark grey line shows the SNR of the static directional
microphone. Those conditions in which at least one
object performed better than the directional micro-
phone are indicated with a star.

The EOG control was tested only in a preliminary
pilot experiment, to prove the general concept. Test
subjects reported that the option of selecting streams
increases subjective speech intelligibility in situations
with concurrent talkers. They also reported that the
identification of eye gestures needs further improve-
ment, to avoid false alarm in case of head motion.
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Figure 1: SNR analysis of the environments (hori-
zontal lines) and the algorithm performance (vertical
grey lines) as well as the performance of a static direc-
tional microphone (dark grey lines). A star indicates
those conditions where at least one CASA object has
a higher SNR than the directional microphone.

4 Conclusion

In the current paper, a CASA algorithm for a decom-
position of an acoustic scene into objects and their
re-synthesis was introduced. This algorithm was de-
veloped to demonstrate the general concept of object-
based scene decomposition and re-mixing with eye
control as a hearing aid algorithm. An analysis of
the SNR indicates that the algorithm could be ben-
eficial in some conditions, where at least one CASA
object showed a higher SNR than a static directional
microphone, as commonly used in hearing aids.

Eye gestures recorded by electrooculography can
serve for selection of the desired acoustic stream.

Typical hearing aids do not provide Ambisonics sig-
nals, however, by combining the directional micro-
phones of the left and right hearing aid a first-order
Ambisonics signal can be generated at least in the
lower frequency range, which might be sufficient for
hearing aid users. Implementing an improved version
of the algorithm on a hearing device could be benefi-
cial for a hearing aid user.
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